“p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld

نویسندگان

  • Harry A. Atwater
  • Stefan Maier
  • Albert Polman
  • Jennifer A. Dionne
  • Luke Sweatlock
چکیده

Since the development of the light microscope in the 16th century, optical device size and performance have been limited by diffraction. Optoelectronic devices of today are much bigger than the smallest electronic devices for this reason. Achieving control of light–material interactions for photonic device applications at the nanoscale requires structures that guide electromagnetic energy with subwavelength-scale mode confinement. By converting the optical mode into nonradiating surface plasmons, electromagnetic energy can be guided in structures with lateral dimensions of less than 10% of the free-space wavelength. A variety of methods—including electron-beam lithography and self-assembly—have been used to construct both particle and planar plasmon waveguides. Recent experimental studies have confirmed the strongly coupled collective plasmonic modes of metallic nanostructures. In plasmon waveguides consisting of closely spaced silver rods, electromagnetic energy transport over distances of 0.5 m has been observed. Moreover, numerical simulations suggest the possibility of multi-centimeter plasmon propagation in thin metallic stripes.Thus, there appears to be no fundamental scaling limit to the size and density of photonic devices, and ongoing work is aimed at identifying important device performance criteria in the subwavelength size regime. Ultimately, it may be possible to design an entire class of subwavelengthscale optoelectronic components (waveguides, sources, detectors, modulators) that could form the building blocks of an optical device technology—a technology scalable to molecular dimensions, with potential imaging, spectroscopy, and interconnection applications in computing, communications, and chemical/biological detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient coupling between Si3N4 photonic and hybrid slot-based CMOS plasmonic waveguide

Bringing photonics and electronics into a common integration platform can unleash unprecedented performance capabilities in data communication and sensing applications. Plasmonics were proposed as the key technology that can merge ultra-fast photonics and low-dimension electronics due to their metallic nature and their unique ability to guide light at sub-wavelength scales. However, inherent hi...

متن کامل

Photonic-Plasmonic Hybrid Interconnects: a Low-latency Energy and Footprint Efficient Link

Here we benchmark different photonic interconnect technology options and contrast them to hybridization assuming plasmonics (photonics) for active (passive) elements, respectively. Our results show superior latency and power consumption performance for hybridization. OCIS codes: (200.4650) Optical interconnects, (250.5403) Plasmonics, (230.0250) Optoelectronics, (250.5300) Photonic integrated c...

متن کامل

Terahertz Optoelectronics with Surface Plasmon Polariton Diode

The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonst...

متن کامل

Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators

This article reviews mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators. With related reports mostly published within the last decade, this review focuses on the tuning mechanisms of various passive silicon photonic devices, including tunable waveguides, couplers, ring/disk resonators, and photonic crystal cavities, and their results are selectively elaborated upo...

متن کامل

CMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration

Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metalinsulator-Si-insulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005